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A B S T R A C T   

The southernmost Okinawa Trough back-arc basin is an active and young basin formed just after the collision of 
the Philippine Sea Plate against the Eurasian continental margin. The back-arc extension occurs intensively 
because of the southward or southeastward migration of the southernmost Ryukyu Arc, or the roll-back of the 
Philippine Sea Plate. To better understand the active tectonics and volcanism of the southernmost Okinawa 
Trough, we have conducted deep-tow sub-bottom profiler and side-scan sonar surveys across the back-arc basin. 
Our results show that the volcanism of the southernmost Okinawa Trough is distributed in the southern half of 
the back-arc basin and occurs along some linear or branched zones roughly parallel to the trough axis. Volcanic 
seamounts are obviously located along the central depression of the basin and their sizes show lateral variation. 
On the other hand, the northern half of the southernmost Okinawa Trough back-arc basin has almost no volcanic 
activity, but contains more brittle normal faults. It is noted that gas plumes out of seafloor are generally asso-
ciated with hydrothermal mounds or activities, instead of volcanic seamounts. We suggest that the more com-
plete rifting of the southernmost Okinawa Trough back-arc is limited to the east of ~122o30′E. To the west of 
~122o30’E, the back-arc extension could be still influenced by the inherited NE-SW trending structures of the 
continental crust created during the former Taiwan orogeny in this area.   

1. Introduction 

Along the eastern margin of the Eurasian Plate, the Okinawa Trough 
is an active back-arc basin of the Ryukyu subduction zone, that is caused 
by the subduction of the Philippine Sea Plate beneath the Eurasian Plate 
(Lee et al., 1980； Kimura, 1985； Letouzey and Kimura, 1986; Sibuet 
et al., 1987, 1995, 1998; Hsu et al., 2013). It extends from the Kyushu 
Island of southwest Japan to the Yilan Plain (IP) in northeast Taiwan and 
can be divided into three segments including the Southern Okinawa 
Trough (SOT), the Middle Okinawa Trough (MOT) and the Northern 
Okinawa Trough (NOT) by Tokara Fault and Kerama Gap tectono- 
morphological boundaries (Kodaira et al., 1996; Shinjo et al., 1999; 
Fabbri et al., 2004; Gungor et al., 2012) (Fig. 1). The width of the 
Okinawa Trough increases from 60 to 100 km in the south to 230 km in 
the north, and the water depth decreases from 2300 m to 200 m from 
south to north (Sibuet et al., 1987; Sibuet et al., 1998). The earliest 
rifting of the Okinawa Trough is suggested to be in the late Miocene 

(Hirata et al., 1991; Miki, 1995; Shinjo et al., 1999; Chung et al., 2000; 
Shinjo and Kato, 2000; Sibuet et al., 1987; Miki, 1995; Shinjo et al., 
1999). However, the SOT started to rift in the Pleistocene (~2 Ma), 
because of the clockwise rotation of the southwestern Ryukyu Arc (Miki, 
1995; Park et al., 1998; Shinjo et al., 1999). Hsu et al. (1996) demon-
strated that the 30o clockwise bending of the southwestern RA and the 
former NW-SE trending strike-slip faults with block motions could be 
due to the collision of the Luzon arc with the former southern RA from 8 
Ma to 3 Ma (Sibuet and Hsu, 2004). The crustal thickness along the 
trough axis varies from 27 to 30 km in the NOT to 15–18 km in the SOT 
(Lee et al., 1980; Sibuet et al., 1995). Currently, the deepest and hottest 
hydrothermal activity occurs in the SOT (Miyazaki et al., 2017; Okino 
et al. (2002); Matsumoto et al., 2001). 

Morphologically, the Ryukyu Trench and Ryukyu Arc has changed 
their orientation from NE-SW to NW-SE to the west of longitude 123.5◦E 
(Fig. 1). This change was due to the Luzon Arc collision (Hsu et al., 1996; 
Sibuet and Hsu, 2004). However, the Philippine Sea Plate has already 
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extended westwardly its subduction beneath the northern Taiwan and 
the southernmost Okinawa Trough (Kao et al., 1998; Lallemand et al., 
2001; Lin et al., 2004a, 2004b; Wu et al., 2009). In consequence, the 
southernmost Ryukyu Arc has migrated southward intensively (Hsu, 
2001; Chen et al., 2018), and the rifting of the southernmost Okinawa 
Trough back-arc basin is very active with hydrothermal activities and 
numerous earthquakes (Matsumoto et al., 2001; Okino et al., 2002; Lin 
et al., 2007a, 2007b, 2009, 2019). The Yonaguni Graben is the west-
ernmost depression of the Okinawa Trough back-arc basin and is 
bounded by roughly E-W trending normal faults (Fig. 1). The Yonaguni 
Graben is cut across obliquely by the NE-SW trending Cross-Back-arc- 
Volcanic-Trail (CBVT) (Sibuet et al., 1998). To the west of the CBVT, 
several submarine volcanoes emitting intensive gas plumes out of sea-
floor are distributed along the depression (Lee and Chung, 1998; Tsai, 
1999; Lee et al., 2004; Tsai et al., 2019) (Fig. 1). In this study, we use 
deep-tow sonar data to understand the detailed tectonics and volcanism 
of the southwestern tip of the Okinawa Trough. 

2. High-resolution deep-tow sonar data 

The data used for this study was conducted during a 4-year project of 
“Geological Investigation of Mineral Resource Potential in the Offshore 
Area of Northeastern Taiwan” from 2016 to 2019 (Chen et al., 2019). 
The Deep-tow sonar surveys consist of sub-bottom profiler and side-scan 
sonar and magnetic data. In total, 36 sub-bottom profiler and side-scan 
sonar are used in in study (Fig. 2). The distance between every two 

survey lines is about 500 m and the deep-tow fish is generally kept at a 
distance of about 50 m to the seafloor. In order to stabilize the towed 
fish, we kept the survey vessel at speed range of 1.5 to 2 knots. Our data 
was collected from NE to SW in a direction against the strong surface 
Kuroshio current of northeastward flow. The frequency band of 1.5–6 
kHz was used to collect sub-bottom profiler data and 120 kHz side-scan 
sonar was used simultaneously for each survey line (Fig. 2). In addition, 
the multi-beam bathymetry data was also collected for integrated 
interpretation. 

The advantage of using the deep-tow sub-bottom profiler data is that 
we can have a very high-resolution of the seabed structures till about 50 
m below the seafloor. The vertical resolution of the seabed structures is 
about 40 cm which is generally 25 times higher than the resolution from 
traditional air-gun source seismic profiles. This advantage allows us to 
clearly mark the active faults that outcrop seafloor and identify the 
subtle features in the seabed that are related to tectonic faulting, 
volcanism or hydrothermal activity. Therefore, we can much better 
understand the active tectonics and volcanism that is occurring in the 
southernmost Okinawa Trough bark-arc basin. 

3. Results and discussion 

3.1. Active faulting in the southernmost Okinawa Trough 

As shown in Fig. 1, previous structural studies already indicate that 
the quasi-EW trending normal faults in the southern Okinawa Trough 

Fig. 1. Topography of the southernmost Okinawa Trough and the northeast Taiwan. The traces of the normal faults are generally based on the bathymetry and 
modified from the interpretations of Deffontaines et al. (1994), Sibuet et al. (1998) and Tsai et al. (2018). It is noted that the faults contain two main orientations: the 
NE-SW strike in the northern margin of the Okinawa Trough and the E-W strike around the central depression of the Okinawa Trough back-arc basin. CBVT: Cross 
Back-arc Volcanic Trail. NMHC: North Mienhua submarine canyon. MHC: Mienhua submarine canyon. KLV: Keelung Valley (submarine canyon). NOT: Northern 
Okinawa Trough. MOT: Middle Okinawa Trough. SOT: Southern Okinawa Trough. PI: Pengjia volcanic islet. MI: Mienhua volcanic islet. HI: Huaping volcanic islet. 
MSV: Mienhua submarine volcano. NYRS: North Yilan ridge spur. 
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mainly concentrate along the central grabens and terminate in the west 
near 122o 30′E. To the west or northwest, the faults generally follow the 
of NE-SW orientation. The NE-SW trending faults could have reactivated 
along the inherited structural trend of the former Taiwan mountain belt 
(e.g. Sibuet et al., 1998; Tsai et al., 2018). Based on the multi-beam 
bathymetric data that we collected in the southernmost Okinawa 
Trough (Fig. 2), the roughly E-W trending features are particularly 
obvious to the north of the central depression (or graben) of the 
southernmost Okinawa Trough. These “linear” bathymetric features are 
active normal fault as evidenced by deep-tow sub-bottom profiler data 
DT1–06-08 and DT106–07 (Figs. 3 and 4), showing that the faults 
outcrop the seafloor. Figs. 3 and 4 also show that the northern margin of 
the Okinawa Trough contains more active normal faults than in the 
southern margin. In contrast, the back-arc volcanic intrusions are mainly 
distributed in the middle of the Okinawa Trough or in the southern 
margin of the basin. Based on air-gun source reflection seismic profile 
(Fig. 5), the active faults in the southernmost Okinawa Trough can be 

traced down to about 2 km deep. Profile by profile sub-bottom profiler 
data show that the crustal faulting in the northern margin exhibits not 
only the normal faulting component, but also the strike-slip component 
(Fig. 6). The brittle behavior of the crustal deformation is much clear in 
the northern margin. 

3.2. Active volcanism in the southernmost Okinawa Trough 

The most prominent feature of seamount in the southern Okinawa 
Trough is the CBVT that is obliquely distributed across the central back- 
arc basin depression (Fig. 1) (Sibuet et al., 1998). The abnormally vol-
uminous seamounts of CBVT might be linked to the subduction of the 
Gagua Ridge (Sibuet et al., 1998). In contrast, the back-arc volcanism in 
the southernmost Okinawa Trough is mainly distributed along the 
central depression of the back-arc basin (Figs. 1, 2 and 5), where sea-
mounts have emerged seafloor several to tens of meters (Fig. 6). Some 
volcanoes or submarine volcanoes (including the Mienhua submarine 

Fig. 2. The ship tracks of our deep-tow sonar surveys, superposed on the multi-beam bathymetry. The distance between every two survey lines is about 500 m. Two 
heavy lines of sub-bottom profiler are shown in Figs. 3 and 4, respectively. Twelve sections sub-bottom profiler are lined up in Fig. 6. The air-gun seismic reflection 
profile MCS1146–24 is shown in Fig. 5. GLM: hydrothermal site of the Geolin mounds. PLM: hydrothermal site of the Penglai mounds. 
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Fig. 3. The section and interpretation of sub-bottom profiler DT106–08. It is noted that the active faults have intensively ruptured the seabed and exposed on the 
seafloor. Volcanic intrusions have blanked the stratification of the seabed. See profile DT106–08 location in Fig. 2. 

Fig. 4. The section and interpretation of sub-bottom profiler DT106–07. The lower left panel shows the close-up of the section where the hydrothermal site of the 
Geolin mounds exists. The middle left panel show the gas flare above the Geolin mounds, imaged by the EK38 echo sounder. The lower right panel shows the side- 
scan sonar image of gas flares and hydrothermal mounds in the western portion of the Geolin mounds. See profile DT106–07 location in Fig. 2. 
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Fig. 5. Multi-channel seismic reflection profile MCS1146–24 and its interpretation. It is noted that the volcanic intrusion is particularly intensive in the middle of the 
central depression of the back-arc basin. GLM: Geolin mounds. 

Fig. 6. The sections of sub-bottom profiler from DT106–01 to DT106–12 in the middle of the deep-tow survey area. The red zones indicate the locations of volcanic 
activities in either volcanic seamounts or volcanic intrusions. The blue dashed lines indicate some major active normal faults that exposed on the seafloor. It is noted 
that the sizes of volcanism display lateral variation and the volcanism occurs in some linear or branched pattern. The black dashed line indicates the axis of the 
central depression of the back-arc basin. GLM: Geolin mounds. PLM: Penglai mounds. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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volcano, located offshore northeastern Taiwan or in the northern margin 
of the southernmost Okinawa Trough may be related to the post- 
collision of early Taiwan orogeny (Figs. 1 and 2) (Wang et al., 1999); 
they are not considered as the back-arc basin volcanism. 

In fact, some submarine mounds less than 10 m are scarcely detected 
by onboard multi-beam echo sounders; nevertheless, they can be 
detected by our deep-tow sonar surveys. These small volcanic or hy-
drothermal mounds are highly related to strong hydrothermal activity, 
showing vigorous venting of gases out of seafloor. For instance, the 
Geolin mounds and Penglai mounds are two hydrothermal sites con-
taining numerous small mounds (Hsu, 2017; Tsai et al., 2019) (Figs. 4 
and 7). On top of the Geolin or Penglai mounds, the gas flare almost 
reaches the sea surface (Figs. 2, 4, 6, 7 and 8). The sub-bottom profiler 
section across the Geolin mounds shows that the seabed has seismic 
blanking phenomenon beneath the Geolin mounds, indicating that up-
ward gases related to volcanic activity has disturbed the strata at the site 
of the Geolin mounds (Hsu, 2017; Tsai et al., 2019; Hsu et al., 2019). 
Furthermore, some volcanic activities have intruded the back-arc basin 
seabed and disturbed the seabed stratification, but do not emerge from 
the seafloor (see examples in Figs. 3, 4 or 6). Those features are delicate 
and can be detected by our deep-tow sub-bottom profilers, but hardly 
detected by research vessel onboard sonar equipment. Taking into ac-
count all the volcanic activities (extrusions and intrusions), the south-
ernmost Okinawa Trough back-arc volcanism is not only distributed 
along the central depression or the axis of the back-arc basin but also 
occurs in the southern half of the back-arc basin (Fig. 6). It suggests that 
the southernmost Ryukyu Arc has migrated southward and the southern 

half of the southernmost Okinawa Trough basin has also migrated 
southward. It is coherent with the fast and southward roll-back of the 
Philippine Sea Plate to the south of the southernmost Ryukyu Arc (Hsu, 
2001). However, the back-arc volcanism does not happen everywhere 
but occur along some linear or branched zones (Figs. 6 and 8). The most 
obvious one is the volcanism along the central depression of the back-arc 
basin (Fig. 6). It implies that the volcanism has probably occurred along 
some existing weak zones of crust that were sheared prior to back-arc 
basin opening. Secondly, the sizes of volcanism along the central 
depression seem not equally distributed, as indicated by the emerged 
seamounts along the central depression do not have same sizes (Fig. 6). 
The gradual change of the volcanic volumes along the central depression 
implies that the back-arc basin magmatism may have propagated both 
perpendicular and parallel to the trough orientation. As mentioned 
previously, the actively normal faults are mainly distributed in the 
northern half of the back-arc basin, while the volcanism occurs mainly in 
the southern half of the back-arc basin. It suggests that the back-arc 
basin rifting has incurred more brittle deformation in the northern 
half of the southernmost Okinawa Trough crust and more ductile 
deformation in the southern half of the crust. 

Volcanic gases emitted out of seafloor can be detected by onboard 
high-frequency echo sounders and seen as gas flares or gas plumes in the 
sea water column. Tsai et al. (2019) have completely identified all the 
gas plumes in the southernmost Okinawa Trough by using 38 kHz echo 
sounder (Fig. 8). As shown in Fig. 8, not all the volcanic activities are 
accompanied by the gas plumes. It is particularly interesting to see that 
almost no gas plume exists along the central depression of the back-arc 

Fig. 7. A mosaic map of the deep-tow side-scan sonar images. The hydrothermal site of the Geolin mounds is enlarged.  
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basin, though its volcanic seamounts are prominent (Figs. 6 and 8). 
Except the gas plume emitting from the top of the seamount located in 
the western end of our deep-tow survey area, the rest of gas plumes in 
the southernmost Okinawa Trough back-arc basin occur mainly in the 
Geolin mounds, Penglai mounds, or at the places where normal faults 
exist but no seamounts (Fig. 8). However, the volcanic seamounts and 
intensive gas plumes are present in the southern half of the back-arc 
basin (Fig. 8). 

3.3. Where is the western end of the Okinawa Trough back-arc basin 
rifting? 

The trends of the structural faults off northeast Taiwan or in the 
southernmost Okinawa Trough mainly show NE-SW or E-W orientations 
(Fig. 1) (e.g. Deffontaines et al., 1994; Sibuet et al., 1998; Tsai et al., 
2018). The NE-SW trending faults are distributed in the northern con-
tinental margin of the southern Okinawa Trough, which could be 
inherited structures formed during the compression in early Taiwan 

Fig. 8. A synthetic interpretation of the active faults, volcanism, and gas plumes superposed on (a) bathymetry and (b) the slope of the bathymetry. It is remarked 
that the brittle deformation of crust generally occurs in the northern half of the back-arc basin, while the volcanism is mainly distributed in the southern half of the 
back-arc basin. The gas plumes appear mainly in hydrothermal sites. GLM: Geolin mounds. PLM: Penglai mounds. CBVT: Cross Back-arc Volcanic Trail. 

Fig. 9. The distribution and focal mechanism of the crustal earthquakes (shallower than 25 km) with magnitude greater than 3.5. It is noted that our study area is 
under an extensional regime of normal and with strike-slip components. The crustal extension is generally NW-SE or N-S oriented. The strike-slip faulting is generally 
right lateral. (Dataset is from BATS of Academic Sinica, from 1963 to 2021 March). 
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orogen (Sibuet and Hsu, 2004). Now, these structures have inverted 
from thrusts to normal faults after the collision of the Luzon Arc had 
passed the area off northeast Taiwan (Sibuet and Hsu, 2004). On the 
other hand, the roughly E-W trending faults are distributed along the 
axial zone of the southernmost Okinawa Trough back-arc basin (Figs. 1 
and 2). 

Sibuet et al. (1998) interpreted that the NE-SW trending faults are 
associated with the extension of the southernmost Okinawa Trough 
back-arc basin at the period from 2 to 0.1 Ma, and the E-W trending 
faults with the back-arc extension after 0.1 Ma. Looking at the focal 
mechanisms of crustal earthquakes in our study area, we may find the 
southernmost Okinawa Trough is under an extensional regime and the 
extensional axis is generally in a direction of NW-SE (Fig. 9a). The NW- 
SE extension of the southernmost Ryukyu Arc, southernmost Okinawa 
Trough and the Keelung Shelf could be associated with the northwest-
ward subduction and roll-back of the Philippine Sea Plate (Hsu, 2001; 
Chen et al., 2018; Lo et al., 2019). However, right lateral strike-slip 
faulting earthquakes are also frequent in our study area (Fig. 9b). 
Almost all the strike-slip earthquakes follow the NE-SW orientation 
which is the same as the generally structural trend in northern Taiwan 
(Fig. 9b), except the E-W trending strike-slip faulting earthquakes 
distributed along the axial zone of the southernmost Okinawa Trough 
back-arc basin (inside the red dashed circle zone in Fig. 9b). Our 
interpretation is that a more complete and younger rifting (opening) of 
the Okinawa Trough is limited to the east of ~122o30’E; the back-arc 
extension to the west of ~122o30’E is influenced by the inherited NE- 
SW trending structures. Therefore, the NE-SW trending structures are 
still predominant to the west of ~122o30’E, and the actively volcanic 
seamounts or hydrothermal activities are distributed to the east of 
~122o30’E, especially along the central depression or the southern 
margin of the southernmost Okinawa Trough back-arc basin (Fig. 10). 

4. Conclusion 

Our near-seafloor and deep-tow sub-bottom profiler and side-scan 
sonar data provide a detailed information about the volcanism in the 
southernmost Okinawa Trough back-arc basin. The volcanism, including 
volcanic seamounts, volcanic intrusions and hydrothermal activities, is 
mainly occurring in the southern half of the back-arc basin. However, 
they are distributed along the central back-arc basin depression or along 
some linear or branched zones. It indicates that the back-arc volcanism 
together with the southernmost Ryukyu Arc are migrating southward. 

Volcanic gases emitting out of seafloor in terms of gas flares or gas 
plumes are generally associated with structural faults or hydrothermal 
activities, but seldom with seamounts. A more complete rifting of the 
southernmost Okinawa Trough back-arc basin is occurring to the east of 
~122o30’E, especially along the central depression of the back-arc 
basin. To the west of ~122o30’E the crust is generally dominated by 
NE-SW trending structures, which implies that the back-arc extension is 
still influenced by the inherited NE-SW trending structures of the former 
Taiwan orogen. 
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